Nepenthes diversity and abundance in five habitats in Brunei Darussalam

Received December 9, 2013; accepted May 27, 2014

NURUL AMAL LATIFF
Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jln. Tungku Link, Gadong, BE 1410, Brunei Darussalam. E-mail: amal.latiff@gmail.com

RAHAYU SUKMARIA SUKR
Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jln. Tungku Link, Gadong, BE 1410, Brunei Darussalam. E-mail: rahayu.sukri@ubd.edu.bn

FAIZAH METALI
Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jln. Tungku Link, Gadong, BE 1410, Brunei Darussalam.

ABSTRACT
LATIFF, N. A., SUKRI, R. S., & METALI, F. Nepenthes diversity and abundance in five habitats in Brunei Darussalam. Reinwardtia 14(1): 67 – 71. — The genus Nepenthes is known to be diverse in Bornean forests and has been recorded in Brunei Darussalam in various forest types. We aim to investigate variation in Nepenthes species richness and abundance at five forest types throughout Brunei Darussalam: open secondary, heath, peat swamp, white sand and mixed dipterocarp forests. A total of thirty-nine 5 × 5 m² plots were set up in these forest types. Within each plot, Nepenthes species abundance was quantified, with Nepenthes voucher specimens collected and identified to determine species richness. No significant differences were detected either for Nepenthes species richness or abundance between the five forest types, despite records of Nepenthes in Brunei showing preferences for particular habitat types. We suggest that average species richness and abundance remained constant regardless of forest types in this study, but that these results would likely change if sampling intensity is increased in future studies.

Keywords: Borneo, pitcher plants, habitat, tropical forest.

INTRODUCTION
Nepenthes (Family Nepenthaceae) is the largest genus of pitcher plants with a distribution ranging from northern Australia throughout South-east Asia to southern China (Clarke, 2006). Nepenthes are carnivorous plants that have evolved leaf extensions into jug shaped structures which contain a pool of digestive enzymes to attract, trap and digest animals for its nutritional values (Clarke, 2006). Moran (2010) listed more than 100 recognised species of Nepenthes, with the vast majority occurring in the Indonesian archipelago, Philippines, Borneo and Sumatra. At present, there are 24 Nepenthes species which are endemic to Borneo (Clarke, 2006). Thirteen Nepenthes species have been recorded in the Checklist of Flowering Plants and Gymnosperms of Brunei Darussalam (Coode & Dransfield, 1996): N. albomarginata, N. ampullaria, N. bicalcarata, N. fusca, N. gracilis, N. hirsuta, N. lowii, N. mirabilis, N. rafflesiana, N. reinwardtiana, N. stenophylla, N. tentaculata,
N. veitchii and Nepenthes sp. (unidentified species).

Nepenthes is often characterized as to be able to colonize habitat which lack nutrient (Juniper et al., 1989; Ellison & Gotelli, 2001). Nepenthes can be found in six major habitat types: tropical lowland evergreen rain forest, heath forest, peat swamp forest, montane forest and limestone forest (Clarke, 2006). Lowland mixed dipterocarp forests are typically not very favourable as a habitat for Nepenthes although epiphytic species of Nepenthes (N. reinwardtiana and N. veitchii) have been recorded (Clarke, 2006). In contrast, heath forest or Kerangas forest has generally siliceous and acidic soil, higher temperature and lower humidity, all of which are preferred by Nepenthes. The main aim of this study is to investigate the species diversity, richness and abundance of Nepenthes in five forest types throughout Brunei Darussalam.

METHODOLOGY

A total of nineteen locations within the five forest types (open secondary forest, heath forest, peat swamp forest, white sand and mixed dipterocarp forest) were chosen as study sites throughout Brunei Darussalam (Fig. 1). At each site, two 5 × 5 m² plots were set up with the exception of the mixed dipterocarp forest site where three plots were set up, giving a total of 39 (Table 1). To ensure the presence of Nepenthes, sites were surveyed and selected in localities with Nepenthes presence, but plots were set up randomly at these selected localities.

Nepenthes plants were counted as one individual plant if the stems or runners grew from the same root (Clarke, 2006). In this study, only terrestrial Nepenthes species were recorded but not epiphytic Nepenthes species due to limited access. Voucher specimens of all Nepenthes species, including possible hybrids, were collected and prepared as herbarium specimens following the guidelines of Clarke & Moran (2011). Representative samples of the intact pitcher of each species collected was also preserved in ethanol and high quality photographs were taken of the upper and lower pitchers to record details of pitcher geometry for identification purposes (Clarke & Moran, 2011). All specimens were taken to the Brunei Forestry Department Herbarium (BRUN) at Sungai Liang for identification with the assistance of BRUN staff.

Between plot differences in Nepenthes species richness and abundance from the five forest types was determined by using one-way ANOVA. Species richness and abundance were expressed as the number of Nepenthes species, and the number of individuals, respectively within a plot. Assumptions of normality and equal variances were
checked during one-way ANOVA and were not violated. Nepenthes species diversity for each plot was calculated using Shannon’s index of diversity. All statistical analyses were conducted in R 2.15.2 (R Development Core Team, 2012).

RESULTS

A total of five Nepenthes species were recorded within the 39 plots: N. ampullaria, N. bicalcarata, N. gracilis, N. mirabilis and N. rafflesiana. In addition, there were two unidentified hybrids (Hybrid sp.1 and sp.2) recorded. The most abundant species was N. gracilis (n = 3067) while the two hybrid species were the least abundant (Hybrid 1 = 2; Hybrid 2 = 5) (Table 2). N. gracilis and N. ampullaria were recorded in all five forest types. However, some Nepenthes species were restricted to certain forest types: N. bicalcarata was only found in the peat swamp forest, N. rafflesiana was found in all forest types except in the heath forests and both hybrids were only found in the open secondary forests (Table 2). An individual of N. hemsleyana was also recorded in close proximity to one of the peat swamp forest plots in Badas, but was not censused as it was found outside the plots.

The highest mean Nepenthes species richness was recorded in the white sands plots (2.2 ± 0.2 species, Table 3), while the highest mean abundance was recorded in the peat swamp forest plots (135.5 ± 58.4 individuals, Table 3). However, these differences were not significant when tested using one-way ANOVA (Table 3). The highest species richness of 4 species was recorded in plot 30, located in open secondary forest. The plot with the highest abundance was the plot located in the peat swamp forest (n = 273), and the plot with the least abundance was the plot located in open secondary forest (n = 17).

DISCUSSIONS

The present study recorded highest mean species richness of Nepenthes in the white sands plots but the highest mean species abundance was recorded in the peat swamp forest plots. Despite this, species richness and abundance of Nepenthes were not significantly different between the five forest types. A possible reason for the lack of significant difference may be inadequate and unequal sample sizes in terms of replication of the plots for each forest type. Attempt to record as many sites as possible was done but there was an obstacle of limited access to the different forest types especially high altitude forest. Our study also focussed only on terrestrial species, thus there may be an underestimate of species richness due to the omission of epiphytic species.

Nepenthes gracilis showed the highest abundance and was found in almost all of the plots especially in open secondary forest plots. N. gracilis is known to be the most common Nepenthes species in Borneo regardless of soil
types, light, water content and can be found in almost all vegetation types (Clarke, 2006). *N. rafflesiana* was found in open secondary forest, lowland MDF and white sands plots, but not in the heath forest and only one individual was found in the peat swamp forest plot. Adam (2011) found that *N. rafflesiana* grew in acidic soil with high clay content and water retention, such as the clay soils of the lowland MDF. He further stated that *N. rafflesiana* is commonly found in cleared areas such as the open secondary forest plots and white sands area. However, Clarke (2006) stated that lowland MDF is not very favourable as a habitat for *Nepenthes* due to its very poor soil where the nutrients are recycled in the detritus layer on top of the soil – only epiphytic types of *Nepenthes* (*N. reinwardtiana* and *N. veitchii*) have been recorded in such habitat. In this study, three *Nepenthes* species (*N. rafflesiana*, *N. ampullaria* and *N. gracilis*) were found at the ridge of the MDF. As reported by Clarke (2006) that certain lithophytic *Nepenthes* species such as *N. hirsuta* has been recorded growing near vegetation boundaries of MDF. *Nepenthes ampullaria* was found in all of the forest types except in the open secondary forest. Adam (2011) noted that *N. ampullaria* can grow in acidic soils with high clay content.

Almost all of the *Nepenthes* species recorded in this study were found in the open secondary forest except for *N. bicalcarata* which was exclusive to the peat swamp forest plots. One of the distinctive characteristics of the peat swamp forest is its forest floor which is waterlogged and permanently wet compared to other forest types. It is possible that *N. bicalcarata* is specialised to the waterlogged and highly acidic condition of the peat swamp forest (Clarke, 2006). Anderson (1963) also recorded the presence of *N. bicalcarata* in open canopy areas of peat swamp forests. Moreover, *N. bicalcarata* has evolved mutualistic relationship with the ant *Camponotus schmitzi* which are only found in peat swamp forests (Moran & Clarke, 2010; Bonhomme et al., 2011). It is therefore possible that this mutualistic association further contributes to the specialisation of *N. bicalcarata* to peat swamp forests, by encouraging co-evolution between the ants and *N. bicalcarata*. Hence, these combine characteristics of peat swamp forests seem to be the most favourable for *N. bicalcarata* to grow.

CONCLUSION

Our study has detected no significant difference in *Nepenthes* species richness and abundance between the five habitat types in Brunei Darussalam. We argue that this was likely due to limited replication of plots representing the different forest types and that a higher sample size and replication would enable a significant difference to be detected. One interesting finding from our study was the presence of *Nepenthes* species at the lowland MDF site in Teraja. We suggest that future studies should quantify both edaphic and environmental variables that may be influential upon *Nepenthes* species diversity and abundance in Brunei Darussalam.

Table 2. The *Nepenthes* species abundance for each *Nepenthes* species recorded and five forest types (A – Open Secondary forest, B – Heath forest, C – Peat Swamp Forest, D – White sands forest, E – Mixed Dipterocarp forest).

<table>
<thead>
<tr>
<th>Nepenthes species</th>
<th>Forest type</th>
<th>Total Nepenthes species abundance per species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>N. ampullaria</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>N. bicalcarata</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. gracilis</td>
<td>2238</td>
<td>89</td>
</tr>
<tr>
<td>N. mirabilis</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>N. rafflesiana</td>
<td>321</td>
<td>0</td>
</tr>
<tr>
<td>Hybrid sp.1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Hybrid sp.2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total Nepenthes species abundance per forest types</td>
<td>2635</td>
<td>112</td>
</tr>
</tbody>
</table>
Table 3. The mean values (± SE) of species richness, species abundance and Shannon’s Index (species diversity) of *Nepenthes* recorded in each forest type: A = Open Secondary, B= Heath, C= Peat Swamp, D= White Sand, E= Mixed Dipterocarp. Level of significance of the differences between these values was statistically quantified at *P* < 0.05 using one-way ANOVA.

<table>
<thead>
<tr>
<th>Species diversity measures</th>
<th>A</th>
<th>B†</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species richness</td>
<td>1.79 ± 0.15</td>
<td>1†</td>
<td>1.5 ± 0.28</td>
<td>2.16 ± 0.16</td>
<td>1.66 ± 0.33</td>
<td>0.300</td>
</tr>
<tr>
<td>Species abundance</td>
<td>109.8 ± 12.6</td>
<td>56 ± 33.0</td>
<td>135.5 ± 58.4</td>
<td>55.8 ± 10.7</td>
<td>39.3 ± 7.8</td>
<td>0.100</td>
</tr>
<tr>
<td>Shannon’s Index</td>
<td>0.46 ± 0.08</td>
<td>0†</td>
<td>0.35 ± 0.20</td>
<td>0.77 ± 0.07</td>
<td>0.69</td>
<td>0.070</td>
</tr>
</tbody>
</table>

† Only one *Nepenthes* species was recorded in heath forest plots, giving no variation and no value for Shannon’s index.

Acknowledgements

This study was conducted as part of an honours dissertation at Universiti Brunei Darussalam. We would like to thank the Brunei Forestry Department for permission to conduct research and sample *Nepenthes* in the plots. We are grateful to botany staff of the Brunei National Herbarium (BRUN), particularly Awg. Joffre Hj Ali Ahmad (Head of BRUN) and Awg. Muhammad Ariffin Kalat, Awg. Watu Awok and Awg. Azlan Pandai for their assistance with identification of *Nepenthes* specimens. Dr Martin Dancak (Palacky University, the Czech Republic) kindly verified the identification of *Nepenthes*, both in the field and by examining voucher specimens. We also thank the technical staff of the Environmental and Life Sciences Programme, Faculty of Science, UBD for assistance with laboratory work.

References

